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Abstract. Gribov’s scenario of supercritical charges in QCD is investigated. We perform a numerical study
of the corresponding equation for the Green function of light quarks. This is done in an approximation
which neglects all pion contributions. Different types of solutions in the Euclidean region are discussed and
the mass function of the quark is calculated. The solutions of the equation are shown to have a qualitatively
different behaviour if the strong coupling constant αs exceeds a critical value αc = 0.43 in the infrared
region. Chiral symmetry breaking is found to occur at supercritical coupling. The analytic structure of the
solutions is investigated. Earlier results obtained by Gribov are confirmed and extended.

1 Introduction

The breaking of chiral symmetry and the confinement of
quarks and gluons are two of the most important proper-
ties of QCD. The details of the mechanism leading to con-
finement are still largely unknown, and the understanding
of non–perturbative dynamics in QCD in general is still
rather poor. A new picture of the confinement mechanism
and of chiral symmetry breaking was developed by V. N.
Gribov [1]–[4]. It is based on the phenomenon of supercrit-
ical charges which can occur in QCD due to the existence
of very light quarks. Its consequence is a dramatic change
in the vacuum structure of the light quarks compared to
the usual perturbative picture at small coupling.

The phenomenon of supercritical charges is well-known
in QED (for an extensive review see [5]). The energy of
the bound–state levels in the field of an isolated heavy nu-
cleus decreases if the charge Z of the nucleus is increased.
When the charge exceeds a critical value1 of Zcr = 137,
the lowest bound–state level dives into the Dirac sea, i. e.
sinks below −me. As a consequence an electron from the
(filled) continuum undergoes a transition into this level,
and a positron is emitted. The electron is said to ‘fall onto
the center’. In this situation the simple quantum mechan-
ical picture breaks down, and the emerging bound state
is in fact a collective state with a high probability to find
an electron very close to the nucleus. This mechanism is
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1 This number holds for a point–like nucleus, for an extended
charge it is around Zcr ∼ 165.

called supercritical binding. The condition for its occur-
rence is that the Compton wavelength 1/m of the electron
is much larger than the radius of the heavy charge.

Gribov’s confinement scenario is based on the idea that
a similar phenomenon occurs in QCD due to the existence
of very light (almost massless) quarks. The crucial point
is that in this scenario already the color charge of a single
quark is supercritical. Since this applies also to the light
quarks themselves the situation is more involved than in
QED. We will give only a condensed description of the
resulting scenario here. More detailed accounts have been
given in [2,4,6,7]. In order to get an understanding of the
underlying physical picture we again use the quantum me-
chanical description, having in mind that the quantitative
analysis should be based on the full underlying quantum
field theory.

The confinement of heavy quarks in Gribov’s scenario
is very similar to the supercritical binding in QED. Due to
its supercritical charge the heavy quark captures a light
antiquark from the vacuum, thus decaying into a super-
critical heavy–light bound state. At the same time a light
quark is created. This light quark decays again, as we will
discuss now.

In order to understand the confinement of light quarks,
we first consider a bound state of a light quark and a light
antiquark. If the coupling constant is small this is just a
normal bound state like positronium in which the quarks
have positive kinetic energy. If we now increase the cou-
pling the binding energy will also increase. The total en-
ergy of this state will thus decrease. But if the coupling
is further increased — and becomes supercritical — a sit-
uation is possible in which the total energy of the bound
state becomes negative. In order to have a stable vacuum,
however, the existence of negative energy particles has to
be avoided. Consequently, the corresponding quark states
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Fig. 1. Vacuum of light quarks in Gribov’s scenario. q0 and ~q
denote the (kinetic) energy and three–momentum, respectively

in the supercritical bound states have to be filled in the
vacuum. Therefore there are filled quark states with posi-
tive kinetic energy in addition to the usual filled states in
the Dirac sea (see2 Fig. 1). The scale µF separating filled
and empty states of positive kinetic energy resembles the
Fermi surface in solid state physics. The existence of the
additional states in the vacuum of light quarks implies
also the existence of additional excitations of this vacuum
which have quite unusual properties. The qq̄ pair of such
an excitation forms a supercritical bound state in which
the quark and antiquark both have negative kinetic en-
ergy. They are interacting repulsively, and the supercrit-
ical bound state has positive total energy. The ‘binding
force’ leading to this unusual meson3 is the Pauli exclu-
sion principle. The quark and antiquark are bound in this
meson because all other energetically possible states in the
vacuum are already filled.

Having discussed the emergence of the novel meson
states, we can now understand the confinement of light
quarks. According to Gribov it is caused by the contin-
uous decay of the light quark. Any quark (with positive
or negative kinetic energy, q(+) or q(−)) decays into a su-
percritical bound state M and a quark q(−) of negative
kinetic energy,

q(±) → M + q(−) . (1)

2 In this figure only the energy of the quark is shown. One
has to keep in mind that some of the states shown here exist
only within supercritical bound states with an antiquark as
described above.

3 Some possible properties of these novel mesons have been
discussed in [8,9].

In this sense the quark exists only as a resonance and
cannot be observed as a free particle.

Since the existence of the novel meson states is due to
the Pauli principle it is immediately clear that the above
confinement mechanism works only for quarks but not for
gluons. But the confinement of gluons could possibly be a
‘second order effect’ in Gribov’s scenario, namely due to
their coupling to light quarks which subsequently decay
as described above.

It is obviously desirable to find a quantitative descrip-
tion for this interesting physical picture of supercritical
color charges. The confinement of quarks and gluons should
be encoded in the singularities of the respective Green
functions. Therefore the Green function of the quark is a
suitable object to study in this context. In [2,3] Gribov
derived an equation for the retarded Green function of
light quarks. It takes into account especially the dynam-
ics of the infrared region but also reproduces asymptotic
freedom at large momenta. Chiral symmetry breaking has
been found to occur when the strong coupling constant
exceeds a critical value, leading to the emergence of Gold-
stone boson (pions). It has been argued in [3] that the na-
ture of these Goldstone bosons is such that they should in
fact be regarded as elementary objects. Corrections to the
Green function caused by these Goldstone bosons are ex-
pected [4] to lead to a Green function of light quark which
exhibits confinement, whereas the equation without these
corrections is not expected to imply confinement [2,3]. Un-
fortunately, the paper [4] remained unfinished, and a full
study of the analytic properties of the Green function and
their consequences still remains to be done. Especially, it
will be important to see how and to what extent the —
though somewhat simplified — physical picture described
above can be derived from the analytic properties of the
resulting Green function.

Gribov’s equations for the Green function of light
quarks (with or without pion corrections) are non–linear
differential equations. So far the studies of these equations
[2–4] have been performed only by means of asymptotic
expansions. It is the purpose of the present paper to per-
form a complete numerical study of the equation without
pion corrections. This allows us to study the breaking of
chiral symmetry also quantitatively and in more detail.
We also investigate the analytic structure of the Green
function resulting from Gribov’s equation.

It turns out that in Gribov’s equation the critical value
of the strong coupling constant is surprisingly low, αc =
0.43. In the derivation of the equation it is assumed that
the coupling constant does not become very much larger
than this critical value. To some extent Gribov’s approach
can thus be considered as a semi–perturbative approach to
confinement. This picture might also explain why we ob-
serve an essentially smooth behaviour of non–perturbative
effects in the transition from the parton level to the hadron
level. Typical multiplicities at the parton level, for exam-
ple, are in surprising correspondence to those observed at
the hadron level (for a more detailed discussion of this
and similar observations see [10]). The idea of an infrared
finite coupling has also been widely discussed in the con-
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text of power corrections and the dispersive approach to
renormalons in QCD [11,12], see also [13] and references
therein. In that approach, it appears consistent to define
an effective running coupling down to very low momentum
scales, in the sense that its first moments have a universal
meaning. The values of the coupling found in the corre-
sponding experimental analyses are in fact bigger than the
critical value in Gribov’s equation.

The equation can be derived from the Dyson–Schwin-
ger equation for the Green function of the quark in Feyn-
man gauge. The approximations made in the derivation
are motivated by the underlying physical picture, espe-
cially concerning the behaviour of the strong coupling
constant. This method can therefore also be viewed as
an unconventional approach to the difficult problem of
solving the Dyson–Schwinger equations in QCD (for a re-
view see [14]). The approximations usually made in solving
the Dyson–Schwinger equations are intrinsically difficult
to control. Comparisons with results obtained in Gribov’s
approach will therefore be potentially very useful.

The paper is organized as follows. In Sect. 2 we out-
line the main steps leading to the equation for the Green
function of light quarks and describe some of its most
important properties. In Sect. 3 a suitable parametriza-
tion of the Green function is given. The asymptotic be-
haviour of the equation for small and large momenta is
discussed and the critical value of the strong coupling
constant is derived. Section 4 deals with the Euclidean
region of space–like momenta. In Sect. 4.1 the solutions
are shown to exhibit asymptotic freedom at large space–
like momenta. Section 4.2 provides models for the running
coupling at small (space–like) momenta which are needed
for the numerical analysis of the equation. The possible
types of solutions in the Euclidean region are classified in
Sect. 4.3. The characteristic change in the solutions at su-
percritical coupling is discussed. Section 5 deals with the
behaviour of the dynamical mass function of the quark in
the Euclidean region. Phase transitions are found to oc-
cur for supercritical coupling and lead to chiral symmetry
breaking. We study how this effect depends on the models
used for the running coupling in the infrared. In Sect. 6
we determine the analytic structure of the solutions in the
whole momentum plane for the different types of solutions
classified in Sect. 4.3. We close with a summary and an
outlook.

The results presented in Sects. 3.2 and 4.1 concerning
the asymptotic behaviour of the equation have partly been
obtained already in [2]. They have been included in some
detail in the present paper since they are immediately rel-
evant to our analysis and serve to make it self–contained.

2 The equation for the Green function
of light quarks

In this section we will outline the main steps that lead to
the equation for the Green function of light quarks and
and highlight some of its properties which are relevant
to our discussion. Some of these properties and the full

λ2 −q2

αc

αs(q2)

Fig. 2. Assumed behaviour of the strong coupling αs(q2)

derivation of the equation have been discussed in detail in
[2,3].

The first step is the choice of a gauge. As noted by
Gribov, the Feynman gauge turns out to be particularly
well suited for deriving a simple equation which is espe-
cially sensitive to the infrared dynamics. In other gauges
it would be extremely difficult to find a similarly simple
equation. The physical results, like for example the oc-
currence of chiral symmetry breaking, will of course be
independent of the choice of gauge. In Feynman gauge
the gluon propagator has the form

Dµν(k) = −gµν

k2 αs(k2) . (2)

The exact behaviour of the strong coupling constant αs

is not known at small momenta. In Gribov’s derivation of
the equation it is assumed that the coupling constant is
a slowly varying function of the momentum and does not
become very large at small momenta. Such a behaviour
is sketched in Fig. 2. It turns out that the occurrence of
a supercritical behaviour of the Green function does not
depend on the details of the coupling in the infrared, as
long as its value is above the critical value in some inter-
val of momenta. As we will see, this critical value is rather
low, αc = 0.43. These properties of the running coupling
are consistent with the picture arising in the dispersive
approach [11] to power corrections in QCD (for reviews
see [10,13]). There it appears that the definition of a run-
ning coupling constant at very low momenta is possible
in the sense that its integral moments have a universal
meaning. Motivated by this, possible models for the cou-
pling have been constructed, see for example [15,16]. For
our numerical study we will choose a rather simple form
of the coupling, see Sect. 4.2 below.

One starts from the Dyson–Schwinger equation for the
inverse Green function G−1 of the quark and considers
its perturbative or diagrammatic expansion. To the corre-
sponding sum of diagrams one applies the double differen-
tiation ∂2 = ∂µ∂µ, where ∂µ is the derivative with respect
to the external momentum qµ of the quark. Firstly, this is
a way to regularize the divergences in these diagrams, and
gives a finite result. Secondly, it can be used to collect the
most singular contributions to the quark Green function
from the infrared region. This is based on the observation
that the action of ∂2 on the gluon propagator in Feynman
gauge gives a delta function,

∂2 1
(q − q′)2 + iε

= −4π2i δ(4)(q − q′) . (3)
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The integration variables in all diagrams can be arranged
in such a way that the external momentum of the quark
is carried along gluon lines. If a gluon line is now dif-
ferentiated twice, the above identity then transforms the
integral over the corresponding gluon momentum into two
zero–momentum gluon insertions. All other contributions
to the respective integrals — those with derivatives in dif-
ferent lines or of the running coupling — are clearly less
singular in the infrared region. It is in principle possi-
ble to treat these terms systematically as corrections. But
the resulting equation will then be a complicated integro–
differential equation, as briefly indicated in [9]. In first
approximation those contributions are neglected, and one
is left with a series of diagrams with two gluon insertions
that carry zero momentum. This sum can be shown to be
the diagrammatic expansion of a full inverse quark Green
function with two full quark–gluon vertices Γµ(q, k = 0)
inserted. Using Ward identities the latter can be replaced
by derivatives ∂µG

−1 of the quark Green function. Hav-
ing eliminated the vertex functions, one ends up with a
second order differential equation for the Green function
of a light quark,

∂2G−1 = g(∂µG−1)G (∂µG
−1) , (4)

where

g = CF
αs(q)
π

. (5)

This is Gribov’s equation which will be the subject of our
study.

A comment is in order concerning the choice of scale
of the running coupling in (5). As described so far, the
derivation of the equation has concentrated on the most
important contributions from the infrared region. But it is
of course desirable to find an equation which describes the
Green function correctly also in the ultraviolet region. The
use of the relation (3) implies that the coupling has to be
evaluated at zero momentum. But it can be shown that by
replacing αs(0) by αs(q) one arrives at an equation that
also reproduces the correct behaviour at large momenta.
Given the assumptions about the running coupling dis-
cussed earlier, the correction induced by this replacement
is subleading as far as its contribution to the infrared re-
gion is concerned. In the approximation presently consid-
ered we can therefore accept equation (4) with (5) as an
equation that is expected to provide an adequate descrip-
tion of the Green function at all momentum scales.

For simplicity, equation (4) is written for one–flavour
QCD. This is sufficient as long as we are mainly inter-
ested in the occurrence of confinement and chiral symme-
try breaking. The generalization to the more realistic case
of a doublet of light quarks is straightforward and will
be important for the study of bound states in Gribov’s
picture.

The fact that equation (4) is a second order differential
equation implies that its solutions will involve two dimen-
sionful constants of integration. These will be related to
the quark mass and the quark condensate.

An obvious and important property of the equation is
its invariance under a rescaling of the Green function,G →

cG for any constant c. As a consequence, the equation
will not involve the full wave function renormalization but
only its logarithmic derivative. The equation is not scale
invariant with respect to the momentum. The breaking
of scale invariance is due to the presence of the running
coupling constant. It is only through the running of the
coupling that a momentum scale is introduced.

A further property of the equation is a certain sym-
metry between the Green function G and its inverse G−1.
One can easily show that the equation (4) implies

∂2G = (2 − g)(∂µG)G−1(∂µG) . (6)

This means that G solves the same equation as G−1, but
with g replaced by 2−g, the symmetry point being g = 1.
At g = 2, corresponding to αs = 3π/2, the Green function
would thus become a free Green function. This symme-
try is certainly unphysical, and we should trust the equa-
tion only for comparatively small values of the coupling,
roughly speaking below one or two. This is in agreement
with the fact that in the derivation of the equation the
coupling was assumed to be small.

3 Parametrization and asymptotic behaviour

3.1 Parametrization

Due to invariance under parity and Lorentz transforma-
tions the inverse Green function has the general form

G−1(q) = a(q2) 6q − b(q2) (7)

with two scalar functions a and b. We will in the following
use the variable

q ≡ √
qµqµ , (8)

such that the half plane <e q ≥ 0 already covers the full
plane in q2, the variable in which the Green function is
usually discussed. It will be convenient to use instead of
(7) the following parametrization of the Green function4,

G−1 = −ρ exp
(

−1
2
φ
6q
q

)
(9)

with two complex functions ρ and φ. This corresponds to

a(q2) =
1
q
ρ sinh

φ

2
(10)

b(q2) = ρ cosh
φ

2
(11)

in the parametrization (7). The dynamical mass function
M of the quark is then given by the function φ only,

M(q2) =
b(q2)
a(q2)

= q coth
φ

2
, (12)

4 This parametrization deviates from the one used in [3,4].
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whereas the function ρ represents the wave function renor-
malization. In terms of the usual notation we have Z−1 =
ρ/q. We further introduce

ξ ≡ ln q = ln
√
qµqµ (13)

and denote the derivative with respect to this variable as

ḟ(q) = ∂ξf(q) . (14)

Since the solutions of Gribov’s equation (4) depend only
on the logarithmic derivative of the wave function renor-
malization, it is useful to define

p = 1 + β
ρ̇

ρ
(15)

where
β = 1 − g = 1 − CF

αs

π
. (16)

Then the equation (4) for the Green function translates
into a pair of coupled differential equations for p and φ,

ṗ = 1 − p2 − β2
(

1
4
φ̇2 + 3 sinh2 φ

2

)
(17)

φ̈+ 2p φ̇− 3 sinhφ = 0 , (18)

which will be the basis of our further analysis.

3.2 Asymptotic behaviour

We now study the asymptotic behaviour of the solutions
of Gribov’s equation. An important outcome of this study
will be the determination of the critical coupling at which
chiral symmetry breaking occurs.

First we keep the coupling constant fixed. The running
of the coupling can then be treated under the assumption
that the asymptotic behaviour of the solutions depends
smoothly on the coupling. This assumption will be jus-
tified by our numerical analysis further below. Since the
equations (17) and (18) depend only on the logarithm of
q the equations are the same along all straight lines pass-
ing through the origin of the complex q-plane. The initial
conditions, at q = 0 for example, do not exhibit this ap-
parent symmetry such that the solutions will be different
in different directions in the q-plane. The fixed points of
the equation, however, turn out to be independent of the
direction in the q-plane.

Behaviour for |q|→∞
For large |q| the pair of equations (17), (18) has stable
fixed points at

φ = (2n+ 1)iπ (n ∈ Z) ; p =
√

1 + 3β2 . (19)

As we will see in Sect. 4.1 the existence of these fixed
points implies the asymptotic freedom of the correspond-
ing solutions.

The periodicity of the above fixed points is obvious
from the equations, and we will now concentrate on the
fixed point at φ = iπ. Perturbing the solutions around the
fixed point,

φ = iπ + ψ ; p = p0 + p̂ (20)

and expanding to first order in the perturbations we find

p2
0 = 1 + 3β2 > 0 . (21)

Further we have
∂ξp̂ = −2p0p̂ , (22)

such that p̂ = De−2p0ξ with some D ∈ C. For a sta-
ble fixed point we thus have to choose the positive root
p0 =

√
1 + 3β2 > 0 in (21). We note that the function ρ

consequently develops a singularity

ρ ∼ exp
[
p0 − 1
β

ξ

]
. (23)

The linearized equation for ψ becomes

ψ̈ + 2p0ψ̇ + 3ψ = 0 . (24)

Thus ψ = C1e
γ+ξ + C2e

γ−ξ with C1, C2 ∈ C. We find

γ± = −p0 ±
√

3β2 − 2 . (25)

Here γ+ and γ− can be real (β2 > 2/3 ) or complex (β2 <
2/3). As we will see in Sect. 5 these two possible cases
have quite different physical consequences.

In the first case, β2 > 2/3, the function φ approaches
iπ monotonically. This case is characterized by

g < gc = 1 −
√

2
3

' 0.18 (26)

or

g > 1 +

√
2
3

' 1.82 . (27)

Here we find the critical value of the coupling constant αs

already mentioned earlier,

αc =
3π
4
gc ' 0.43 , (28)

at which the solutions change their behaviour.
In the second case, β2 < 2/3, the function φ oscillates

while approaching the fixed point iπ. The corresponding
supercritical behaviour of the equation is characterized by
values of the strong coupling constant αs in the interval

αc < αs < 4.3 . (29)

The emergence of the upper limit is in agreement with
the symmetry of the equation relating the Green function
to its inverse for g → 2 − g, see Sect. 2. The fact that
the equation exhibits subcritical behaviour at very large
values of the coupling is certainly unphysical. We cannot
expect that the equation describes the Green function cor-
rectly also at very large coupling.
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Behaviour for |q|→0

For small |q| there are two possible cases. In the first
case, φ approaches one of the fixed points described above,
φ = (2n + 1)iπ. To show this one can proceed as in the
case of large |q|. But now we are considering ξ → −∞
and therefore have to choose the negative root in (21) in
order to find a stable fixed point, p0 = −

√
1 + 3β2 < 0.

Again, the solutions will oscillate while approaching the
fixed point if the coupling is supercritical.

The other case possible for |q| → 0 is that φ vanishes
at q = 0. Linearizing the equation for small φ results in

φ̈+ 2p0φ̇− 3φ = 0 . (30)

From the equation for p we find that for this fixed point
p → p0 with p2

0 = 1. With the ansatz φ = Ceγξ it is
required that γ > 0 for φ to be regular. In order to have
a solution which at large q approaches iπ with damping
we need p0 = 1 and therefore γ = 1. The easiest way to
see this is from (34) and the corresponding discussion in
Sect. 4 below.

Running coupling

The running of the coupling can be treated assuming that
the asymptotic behaviour of the solutions depends smooth-
ly on it. The values of the function p at the fixed points
discussed above depend on β. Therefore they are changed
accordingly, i. e. have to be replaced by β(q = 0) or β(q =
∞) = 1, respectively. The oscillations occurring for |q| →
∞ stop at the scale at which the coupling becomes smaller
than αc, and φ approaches the fixed point monotonically
above this scale.

4 Solutions in the Euclidean region

We first investigate the equation in the Euclidean region,
i. e. for space–like momenta. Therefore we want to consider
purely imaginary values of our variable q, thus q = iq̃ with
a real–valued and positive q̃. The derivative with respect
to q̃ will be denoted

d

dq̃
f = f ′(q) . (31)

For space–like momenta the dynamical mass function
M(q2) is required to be real–valued. (12) then implies
that φ is purely imaginary. In addition, a real–valued mass
function requires that the function p is real–valued for
space–like momenta. For convenience we define for the use
in the present section

φ = iχ , (32)

where χ is real–valued. In this section we thus have to
consider only real–valued functions χ and p depending on
the real parameter q̃.

The equation (18) for χ (or φ, respectively) can be
reformulated in such a way that it permits a simple inter-
pretation. The function

ε ≡ χ̇2

2
− 3 (1 − cosχ) (33)

can be interpreted as the energy of a motion with χ be-
ing a one–dimensional degree of freedom. The equation of
motion equivalent to (18) is

∂ξε = −2pχ̇2 . (34)

The behaviour of χ can then be interpreted as a motion
with damping (given by p) in the potential

V = −3 (1 − cosχ) . (35)

This potential has minima at χ = (2n+ 1)π for all n ∈ Z.
Thus for space–like momenta the fixed points discussed in
Sect. 3.2 appear as the minima of the potential V .

4.1 Asymptotic freedom

For large Q2 = −q2 the Green function should behave ac-
cording to perturbative renormalization and exhibit
asymptotic freedom. We now show that Gribov’s equa-
tion reproduces exactly this behaviour for solutions that
approach one of the fixed points discussed above. This is
done by considering the leading terms in the limit of large
q̃.

We first consider the wave function renormalization.
The corresponding renormalization constant is in our pa-
rametrization defined as

ρ = eξZ−1(ξ) = qZ−1 , (36)

as can be seen when (10) is evaluated at φ ' iπ. As is
usually done we assume Z(ξ) to be a slowly varying func-
tion. Using (15) and (17) one derives in the limit χ → π
the following equation5 for ρ,

(∂ξ + 3)(∂ξ − 1)ρ+ 3gρ− g
1
ρ
(∂ξρ)2 = 0 . (37)

Inserting (36) and neglecting terms of the order ∂2
ξZ

−1

and (∂ξZ
−1)2 we find

∂ξZ
−1 +

1
2
gZ−1 = 0 . (38)

This coincides with the well–known wave function renor-
malization in Feynman gauge as it can be found for ex-
ample in [17]. Turning to mass renormalization we observe
that close to one of the fixed points, φ = iχ = i(π − σ)
with small σ, the mass function is given by (see (12))

σ = 2e−ξM(ξ) =
2M
q̃

. (39)

5 In [2] this equation (there (4.42)) contains a misprint.
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Linearizing (18) we find

σ̈ + 2
(

1 + β
ρ̇

ρ

)
σ̇ + 3σ = 0 . (40)

We further note that due to (36) and (38)

ρ̇

ρ
= 1 +

∂ξZ
−1

Z−1 = 1 − 1
2
g . (41)

Together with (39) this can be inserted in (40). Neglecting
the term of order ∂2

ξM we arrive at

∂ξM = −3
2
gM , (42)

which is exactly the mass renormalization at one loop. Its
solution is

M(q2) = m0

[
αs(q2)
αs(q20)

]γm

, (43)

where m0 is the mass at a given scale q0, and in one–
loop approximation the exponent is γm = 4/b0 with b0 =
11 − 2

3nf .
Taking into account also the sub–leading solution for

σ from (40) or, equivalently, from (24) we find that σ
behaves at large q̃ as

σ ∼ 2mq

q̃
+
ν3

q̃3
, (44)

as can be seen from (25) since in this limit β → 1. Ac-
cordingly, the mass function behaves as

M(q2) ∼ mq − ν3

q̃2
. (45)

We thus find two dimensionful parameters, mq and ν3.
These can be identified with the quark mass and a quark
condensate, respectively. It is difficult to disentangle the
two terms in (44) numerically. We will therefore not pursue
this interesting issue any further in the present paper.

4.2 Models for the running coupling

The behaviour of the strong coupling constant is only very
vaguely known in the infrared region. In order to per-
form a numerical study we have to use a model for αs.
The model is required to be in agreement with the gen-
eral assumptions used in the derivation of the equation
(see Sect. 2). Obviously, any useful model should coincide
with the perturbative running of the coupling at large mo-
mentum scales. In the following we will use two different
models of this kind. Both are rather simple but should be
sufficient for studying the physical effects resulting from
Gribov’s equation. More complicated models (see for ex-
ample [15,16]) could of course be implemented in the same
way.

For the perturbative behaviour of the coupling we have
to specify ΛQCD and nf . Moderate changes in these param-
eters do not have any significant effect on our results for
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Fig. 3. Models for the strong coupling constant (A, B) and
the behaviour according to one–loop renormalization (C)

the Green function since they only change the behaviour
of αs at large momenta where the coupling is subcritical.
To be specific we choose ΛQCD = 250 MeV and nf = 3.
(The latter choice is not completely in agreement with
the fact that the equation is in the present paper stud-
ied for only one flavour. The choice nf = 1 would lead to
almost identical results for the Green function.)

Our first model is the more realistic one, and is mo-
tivated by the dispersive approach to power corrections
in QCD [11]. This approach is based on the assumption
that the coupling constant can be defined down to very
small momenta, and that this coupling in the infrared has
a universal meaning. Then it is possible to determine its
integral over the infrared region from measurements of
infrared and collinear safe observables like certain event
shape variables (for a recent review see [10]). In this way
one finds for the integral of the coupling

α0 =
1

2 GeV

∫ 2 GeV

0
αs(k) dk ' 0.5 . (46)

This condition can be fulfilled by shifting the argument
of the logarithm in the usual one–loop formula for the
perturbative running of the coupling,

αs(q2) =
4π(

11 − 2
3nf

)
ln(−q2/Λ2

QCD + a)
. (47)

For a = 0 this is exactly the one–loop renormalization of
the coupling. Our first model for the running coupling is
obtained for a = 6. This choice is made to satisfy the con-
dition (46). We will in the following refer to this model as
type A. This running of the coupling is shown as curve A
in Fig. 3. For comparison we show in that figure as curve
C also the coupling obtained from the one–loop renormal-
ization.

The second model is shown as curve B in Fig. 3. It
is obtained from the one–loop renormalization of the cou-
pling (see (47) with a = 0) by simply cutting it off at some
given value and assuming it to be constant below the cor-
responding momentum scale. In order to avoid problems
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in the numerical treatment of the equation we smooth out
the resulting edge by fitting a polynomial of third degree
such that the first derivative is continuous. Apart from
this detail the coupling in this model, which we will refer
to as type B, is uniquely determined by a given value αs(0)
at vanishing momentum. This model is in general, i. e. for
arbitrary αs(0), not in agreement with the condition (46).
It is not constructed to serve as a realistic description of
the strong coupling. Instead, it will mainly be used in or-
der to study the qualitative effects of Gribov’s equation.
For this purpose a model is useful in which the coupling is
clearly supercritical in a large region of momenta. It will
also be useful to vary the strength of the coupling and to
study the effects resulting from this change. Similarly, a
comparison between the results obtained with coupling of
type A and of type B will be interesting. The differences
will in that case also depend on the initial conditions of
the solutions.

4.3 The solutions in the Euclidean region

We now turn to the numerical study of the pair of dif-
ferential equations (17), (18) in the Euclidean region of
space–like momenta. We have used two different numerical
methods. All solutions presented below have been found
using a Runge–Kutta procedure, i. e. the step–wise inte-
gration of the equation starting from a set of given initial
conditions. We have also used the routine COLSYS [18], a
non–local collocation procedure using B-splines which is
also suited for boundary–value problems with boundary
conditions given at different points. Within numerical er-
rors agreement has been found in all cases in which both
methods have been applied.

The solutions in the Euclidean region can be classified
according to their behaviour at small and large momenta
q̃. As discussed in Sect. 3.2, the possible fixed points for
q̃ → 0 and q̃ → ∞ differ from each other by the values of
the function χ (or equivalently φ). The values of p are then
fixed in the respective limits. Due to the 2π-periodicity of
the equations in χ we can restrict ourselves in the fol-
lowing to the case in which χ → π for q̃ → ∞. We will
distinguish three classes of solutions in which the function
χ approaches in the limit q̃ → 0 the values 0 (or 2π), −π,
or π, respectively. We will now discuss these three classes
separately.

The solutions in the first class6 start at χ(q̃ = 0) = 0.
As discussed in Sect. 3.2 this implies p(0) = 1. The free
parameter in this class of solutions is therefore χ′(0) (or,
equivalently, the renormalized mass mR, see Sect. 5 be-
low). Here and in the following we will measure q̃ in units
of GeV, and thus χ′ in units of GeV−1. For small χ′(0) the
function χ approaches π monotonically. Such a solution is
shown in Fig. 4, and we have plotted both χ and p. If the
coupling constant is subcritical for all q̃ (for example for
model B with αs(0) < αc) the solution is monotonic for
all possible χ′(0). This situation changes if the coupling
constant is supercritical in some interval of momenta. For

6 These are the (only) solutions discussed in [2].
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Fig. 4. Solutions χ and p for χ′(0) = 20 (corresponding to
mR =100 MeV, see below) with running coupling of type A
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Fig. 5. Solution χ for χ′(0) = 250 (corresponding to mR =
8 MeV, see below) with running coupling of type A

small values of χ′(0) the solution is still monotonic, c. f. the
solution in Fig. 4 which is found for supercritical coupling.
Due to the smallness of χ′(0) these solutions come close
to π only at momentum scales at which the running cou-
pling is already subcritical again, and we do not observe
oscillations. But for larger values of χ′(0) the function χ
increases more rapidly and can pass the value π. Such a
solution is shown in Fig. 5. For even larger χ′(0) the func-
tion χ can pass π more often, and in fact even arbitrarily
often for χ′(0) → ∞. However, these oscillations are very
strongly damped as the scale on the vertical axis in Fig. 5
illustrates. In all cases the solutions stop oscillating as
q̃ increases. This was to be expected since the coupling
becomes subcritical at larger momentum scales. If χ′(0)
is negative the function χ approaches −π instead of π at
large q̃. Due to the periodicity of the equations in χ we can
then assume that these solutions start at χ(0) = 2π (in-
stead of 0) and approach the fixed point π. Otherwise the
behaviour of these solutions (oscillations, damping etc.) is
not different from the case of positive χ′(0).
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Fig. 7. Solutions χ and p for χ(0.5) = π, χ′(0.5) = 4 and
p(0.5)=0 with running coupling of type A

In the second class of solutions χ runs from −π to π
as q̃ runs from 0 to ∞. In other words, χ goes from one
minimum of the potential to a neighboring one. At the
same time p runs from −√

1 + 3β2(0) to
√

1 + 3β2(∞) =
2. It is possible that the zeros of χ and p coincide. Such a
solution is presented in Fig. 6. In a sense, these solutions
are ‘symmetric’. (This term would be more appropriate if
the coupling was not running but constant.) There are also
solutions in which the zeros of χ and p do not coincide,
they are ‘asymmetric’ in this sense.

The third class comprises such solutions in which χ
starts at π and also approaches this value at large q̃. The
solutions thus stay in one well of the potential. At the
same time p runs over the same range as in the previous
class of solutions. Similar to that case, it is possible that
χ = π and p = 0 coincide. Such a ‘symmetric’ solution
is shown in Fig. 7. Of course, there are also ‘asymmetric’
solutions in which these special values of χ and p occur at
different momentum scales.

If the coupling is supercritical the solutions of the sec-
ond and third class can exhibit oscillations of χ around π
(and also around −π for q̃ → 0 in the third class) similar
to the ones described above for the first class.

Numerically, the solution of the first class can be found
by integrating the equation starting at q̃ = 0. In order
to integrate the solutions numerically for the second and
third class one has to start at some intermediate q̃0. This
is no restriction since the matching of two solutions for
0 < q̃ < q̃0 and q̃0 < q̃ < ∞ is trivial. It just reflects the
fact that integrating a differential equation starting from
a stable fixed point leads to exponentially large numerical
errors.

The three classes discussed above exhaust all asymp-
totically free solution in the Euclidean region, i. e. solu-
tions which end up in one of the fixed points for q̃ → ∞.
Especially, there are no solutions in which χ runs from a
minimum of the potential (35) to any other minimum that
is not a neighboring one.

5 Mass renormalization
and chiral symmetry breaking

In this section we would like to address the question how
the dynamical mass function M(q2) of the quark behaves
in the Euclidean region for the solutions discussed in the
preceding section. We will mainly concentrate on the first
class of solutions and only briefly comment on the other
two classes at the end of the section.

Let us define7 the ‘renormalized’ mass mR as the limit
of the mass function M(q2) as the momentum vanishes,

mR = lim
q̃→0

M(q2) . (48)

Since in the first class of solutions χ(0) = 0 we can expand
(12) to find that the renormalized mass becomes

mR =
2

χ′(0)
. (49)

Since χ′(0) was just the free parameter specifying these
solutions we can use mR instead to characterize them
uniquely. Although the renormalized mass is the small–
momentum limit of the dynamical mass function it would
most probably be too simple to interpret it as a con-
stituent mass of the quark.

Further we want to define a ‘perturbative’ mass mP

of a given solution. It is supposed to reflect the behaviour
of the perturbative tail of the mass function of this solu-
tion. This could be achieved by computing its asymptotic
behaviour which is eventually described by (43). For our
purposes it turns out to be sufficient and more convenient

7 This term was introduced in [2] and we adopt it here. This
mass is not meant to be renormalized as opposed to being
a bare mass in the usual sense. The mass function of course
describes the mass renormalization for all q2. This ‘renormal-
ization’ is done down to q̃ = 0, having in mind a starting point
at large q̃.
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Fig. 9. Renormalized mass mR vs. perturbative mass mP for
subcritical coupling (coupling of type B with αs(0)=0.3)

for the numerical study to choose a definition which in-
volves only a finite momentum scale. We therefore define
the perturbative mass as the value of the mass function at
the scale λ at which the coupling becomes subcritical (see
also Fig. 2) and the perturbative behaviour is expected to
set in,

mP = M(λ2) = λ cot
χ(λ)

2
. (50)

Obviously, the scale λ in this definition depends on the
model for the running coupling. In the models A and B
discussed in Sect. 4.2, and presumably in most other re-
alistic models, the values of λ are very similar. Any other
choice of scale would lead to similar results as long as that
scale is chosen larger than λ.

A general property of the solutions of Gribov’s equa-
tion is the rapid decrease of the mass function with in-
creasing momentum. This is illustrated in Fig. 8 for two
solutions that are similar to the one shown in Fig. 4. Both
solutions in this figure do not exhibit oscillations since
they correspond to comparatively small values of χ′(0)
(see also the corresponding discussion in Sect. 4.3).

It is now interesting to study the relation between the
renormalized mass mR and the perturbative mass mP .
First we consider the case of subcritical coupling. We
choose model B for the running coupling with a maxi-
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Fig. 10. Renormalized mass mR vs. perturbative mass mP for
coupling of type B with αs(0)=0.94

mal value αs(0)=0.3. Since the coupling is subcritical for
all momenta the scale λ cannot be defined via the critical
value αc in this model. Therefore we have to supplement
the definition (50) of the perturbative mass with the choice
λ = 1 GeV in this case. This choice is to some extent arbi-
trary. It is mainly motivated by the values of λ resulting
from the models A or B with supercritical αs(0). Other
choices for λ in the subcritical case lead to similar re-
sults for the dependence of mR on mP . This dependence is
shown in Fig. 9. For subcritical coupling there is a one–to–
one correspondence between renormalized mass mR and
perturbative mass mP . The renormalized mass decreases
with decreasing perturbative mass, and vanishes when the
perturbative mass vanishes. Chiral symmetry is thus not
broken at subcritical coupling.

If the coupling is supercritical at small momenta some
of the solutions exhibit oscillations. These are possible un-
til the running coupling becomes subcritical, i. e. as long
as q̃ < λ. There are also monotonic solutions for which
mR has to be sufficiently large (see Sect. 4.3). Let us con-
sider one of the latter. The corresponding function χ has
a certain value at the scale λ. But there are also solutions
χ with smaller mR = 2/χ′(0) which oscillate and pass π
twice. It is now possible that one of these solutions has the
same value at the scale λ as the monotonic solution consid-
ered before. There can in fact be even more solutions with
this property, among them also solutions with negative
mR (resp. negative χ′(0)). The number of these solutions
will (for mP 6= 0, see below) remain finite. The reason for
this is the following. A solution χ which oscillates very
often will be very close to π due to the strong damping in
the corresponding equation. As a result there is a maxi-
mal possible χ(λ) which the solutions can reach for a given
number of oscillations. In summary, we find that different
values of mR (resp. χ′(0)) can lead to identical values of
χ(λ). But since the perturbative mass mP depends only
on this value χ(λ), see (50), the correspondence between
the renormalized and the perturbative mass is no longer
one–to–one. Instead it takes the form shown in Fig. 10,
and the renormalized mass becomes a multi–valued func-
tion of the perturbative mass. Here we have chosen model
B for the running coupling, thus λ = 1.27 GeV. Further
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we have chosen αs(0) = 0.94 in this figure because the
effect is more pronounced at large coupling. The depen-
dence on the coupling strength and on the model will be
studied below. The figure has been obtained by integrating
the differential equation up to q̃ = λ with varying initial
conditions χ′(0).

Figure 10 shows that at supercritical coupling the renor-
malized mass does not vanish in the limit of vanishing
perturbative mass, and we thus find that chiral symmetry
is broken. This figure is one of our main results and we
will now study it in some more detail. At large perturba-
tive mass there is only one branch of solutions, denoted
as φ1 in the figure. But if the perturbative mass is below
a critical mass mc there are two additional solutions with
different renormalized mass, denoted as the branches φ2,
φ3 in the figure, and we can regard this as a phase transi-
tion in the vacuum of light quarks. If we consider only the
region of positive perturbative masses we can identify the
branch φ1 with monotonic solutions, whereas the branch
φ3 corresponds to solutions in which χ passes π. Further,
the branch φ2 can be identified with solutions in which χ
passes π and in addition has a turning point.

We observe that the curve in Fig. 10 is symmetric with
respect to the origin. This is an immediate consequence of
the fact that the equations (17), (18) are invariant under
the exchange

φ → 2πi− φ . (51)

The mass function changes sign under this transformation,
and hence the symmetry.

The phase transition at the critical value mc of the
perturbative mass mP is not the only one. In fact there is
an infinite series of similar phase transitions taking place
in the limit mP → 0. The curve in Fig. 10 exhibits a very
interesting self–similarity which illustrates this series of
phase transitions. In Fig. 11 we show a detail of Fig. 10
around the origin. Both figures show different parts of the
same curve. We denote the critical mass of the second
phase transition as m′

c. In the two additional solutions
occurring at this scale the function χ passes the value π
twice.
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Fig. 12. Critical mass mc of the first phase transition as a
function of the coupling with behaviour of type A and B, re-
spectively

It is interesting to note that in each phase transition
one of the two additional branches of solutions has the
quite unusual property that the renormalized mass grows
with decreasing perturbative mass.

The phase transitions lead to the generation of pions
as Goldstone bosons [2,3]. The Bethe–Salpeter amplitude
of the pion can be shown to be ϕ = C{G−1, γ5} with
a constant C. It solves an equation for qq̄ bound states
which is derived in a similar approximation scheme as the
equation for the Green function [2]. It has been speculated
that the observation of just one pion in nature should
restrict the physical value of the perturbative mass of the
quark to be between the first and second phase transition
[19]. As can already be seen from Figs. 10 and 11, however,
two successive phase transitions happen to take place at
mass scales which differ from each other by two orders
of magnitude. Therefore it is not possible to deduce any
considerable restriction on the physical perturbative mass
of the quark in this way.

It is now instructive to study the dependence of the
critical mass scales on the value and on the model cho-
sen for the running coupling. For this we use the two
models A and B for the running coupling introduced in
Sect. 4.2. There we did not yet define how to vary the cou-
pling strength in model A. We will use the value αs(0) at
vanishing momentum as a parameter (as in model B) and
adjust the value of a in (47) accordingly to obtain a run-
ning coupling of varying strength in this model as well. Of
course, the condition (46) will then no longer be fulfilled.
In model B the momentum scale λ at which the coupling
becomes critical is independent of the value αs(0), but in
model A it depends by construction on the parameter a.
Since this dependence is rather weak and in order to make
the results comparable we use also for model A the fixed
value λ = 1.27 GeV which is obtained for model B.

Figure 12 shows the dependence of the first critical
mass mc on the coupling strength in models A and B.
In order to obtain this figure we have computed curves
similar to the one in Fig. 10 for different values of the
coupling and determined the turning point correspond-
ing to mc. Below the critical coupling there are no phase
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transitions and the critical mass acquires values different
from zero only for supercritical values of the coupling. As
expected, the critical mass then grows with increasing cou-
pling. Realistic values of the coupling are roughly of the
order αs(0) ' 0.8 (model A), corresponding to g(0) ' 0.3.
From Fig. 12 we see that in this region both models give
very similar values for the critical mass mc in the range
of a few MeV. Only for perturbative quark masses below
this small mc we expect chiral symmetry breaking. This
is in perfect agreement with Gribov’s physical picture ac-
cording to which exactly the existence of very light quarks
with masses below of few MeV leads to a dramatic change
in the vacuum structure.

At very large values of the coupling there is a maxi-
mum and the critical mass decreases again. For model B
this maximum is reached at g(0) ' 1.1, and for model
A it is found at g(0) ' 1.5 (outside the range shown in
Fig. 12). This seemingly strange behaviour has its origin
in a property of the equation that we noticed already in
Sect. 3.2. There we found that the oscillations in the solu-
tions χ around the value π disappear at very large coupling
g > 1 +

√
2/3. Had we chosen a fixed value for αs instead

of a running αs in Fig. 12 we would have found in fact that
the critical mass vanishes again at g = 1 +

√
2/3. But in

our models the running coupling is a continuous function.
Even for arbitrarily large g(0) it has in some momentum
range values which make oscillations possible, andmc does
not vanish even at large coupling. Obviously, this is true
for all possible continuous shapes of the running coupling.
We therefore expect that the occurrence of chiral symme-
try breaking due to this mechanism is largely independent
of the details of the running coupling at small momenta.

In Fig. 13 we show the second critical mass m′
c as a

function of the coupling. As we already mentioned the
values of m′

c are almost two orders of magnitude smaller
than the corresponding values of the first critical mass mc.
The behaviour of m′

c at very large coupling (not shown in
the figure) is analogous to the behaviour observed for the
first critical mass, and there is a similar maximum and
decrease at very large g(0).

Finally, we would like to comment on the solutions of
the second and third class found in Sect. 4.3. Here the
interpretation in terms of a renormalized mass is more
involved than in the solutions of the first class discussed
above. This is because here we find χ(0) = −π (second
class) or χ(0) = π (third class), respectively. According to
(12) this implies that a renormalized mass defined as the
limit of the mass function at zero momentum, see (48),
would always vanish. Nevertheless, it should be possible
to define a quantity similar to the renormalized mass mR

at some intermediate but small momentum scale. In the
second and third class of solutions the behaviour at large
momenta is similar to that of the first class, especially
concerning the oscillations. Given a suitable definition of
a renormalized mass in the above sense one would there-
fore observe similar phase transitions and the breaking of
chiral symmetry. A full interpretation of the renormalized
mass, especially for the second and third class of solutions,
remains to be found. Most probably this would require a
better understanding of the difficult problem of the emer-
gence of a constituent mass of the quark.

6 Analytic structure of the solutions

So far we have discussed the properties of the solutions
of Gribov’s equation in the region of space–like momenta.
Now we turn to the problem of determining the corre-
sponding analytic structure of the Green function in the
whole momentum plane. The locations and nature of the
singularities in the complex q2 plane contain crucial infor-
mation about the solutions, especially about their proper-
ties regarding causality and confinement. It has been ar-
gued in [4] that a suitable solution for the retarded Green
function of a confined quark should be free of singularities
in the physical region =m q2 ≥ 0. The analysis of the first
class of solutions (see Sect. 4.3) in [3] has shown that we
should not expect to find such a confining solution of the
equation without pion corrections. We will confirm that
result and extend it also to the two other classes of solu-
tions.

As a first step we need to define the coupling con-
stant in the whole complex momentum plane. This prob-
lem, however, is poorly understood even at large momenta
since the one–loop formula for the running coupling does
not possess a unique analytic continuation. Obviously, the
situation is even worse at low |q|. In order to avoid addi-
tional parameters and artificial singularities we will there-
fore make the simplest possible assumption and choose a
fixed coupling throughout the complex q-plane. The value
of this coupling will be chosen to be supercritical, and in
the examples below αs = 0.8. We have to hope that this
choice will be a suitable approximation at least for small
|q|. For large |q| our choice seems less appropriate. But it
will turn out that the singularities of the Green function
occur at comparatively small values of |q|, probably indi-
cating that an adiabatic modification of the coupling at
large |q| would not change the analytic structure. Obvi-
ously, the choice of a constant and supercritical coupling
disagrees with the models for αs we have used to find the
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Fig. 15. Continuation of =m φ of the solution in Fig. 4 with
a cut on the real q-axis

solutions in the Euclidean region. The details of the solu-
tions will in fact change at large space–like momenta. But
we have checked that the classification of the solutions
given in Sect. 4.3 remains valid.

In order to study the analytic structure we integrate
the equation along suitable contours in the complex plane.
These should start in the Euclidean region where the nec-
essary conditions on the initial values are known and the
possible solutions have been classified (see Sect. 4.3). Some
typical contours are shown in Fig. 14. In general (espe-
cially for the solutions of the second and third class) the
contours need not start in the origin of the q-plane. We
should remind the reader that our definition (8) implies
that the right–hand half of the q-plane already covers the
full q2-plane, and the Euclidean region is given by the
vertical axis in Fig. 14.

The occurrence of poles and cuts in the analytic con-
tinuation will in general lead to a complicated Riemann
surface. We will in the following only discuss singularities
arising in the physical region of the q-plane, although it is
in principle possible to locate also further singularities on
unphysical sheets of the Riemann surface.

We start with the solutions of the first class for which
φ(q = 0) = 0 and φ → iπ for large space–like q, see
Fig. 4 for a typical example. The different solutions of
this class are parametrized by the renormalized mass mR.
All of these solutions have a pole on the real (time–like)
q-axis and a cut along this axis starting at the pole. There
are no other singularities in the physical region of the q-
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Fig. 16. Pole of <e p on the real axis, continuation of the
solution in Fig. 4

plane8. This result holds for all solutions of this class inde-
pendently of their renormalized mass. In particular, this
structure is found even for solutions which are located on
different branches in Fig. 10. The singularity and the cut
on the real axis have been discussed in [2,3] but there
the absence of further singularities could not be proved.
To illustrate our result we show in Fig. 15 the continua-
tion of the solution of Fig. 4, i. e. in this solution again
mR = 100 MeV. In this and in the following figures the
momentum q is given in units of GeV. The cut is clearly
visible. Below the cut the function φ is real–valued on the
real axis. The starting point of the cut coincides with a
pole of the Green function at q = m∗, and in our exam-
ple m∗ = 128 MeV. The pole is most easily seen in the
function p, the real part of which is plotted in Fig. 16 in a
small region around the pole. At this point the function ρ
(see (9)) vanishes such that the Green function develops a
pole. In general, the pole on the real axis moves to larger
values of m∗ when mR is increased.

This analytic structure of the Green function in the
first class of solutions resembles the analytic structure in
perturbation theory. The position of the pole can be in-
terpreted as the mass m∗ of a propagating particle. Obvi-
ously, these solutions do not lead to confined quarks.

Let us now consider the solutions of the second class
in which φ runs from −iπ to iπ in the Euclidean region.
These solutions have been obtained in Sect. 4.3 by choos-
ing at some point qA = ir on the imaginary q-axis the
initial values φ = 0 and p = 0. (This is the ‘symmet-
ric’ case, for the other case see below.) We find that in
all solutions of this kind the Green function develops a
pole exactly on the circle with radius r, with a cut start-
ing at the pole. The exact position of the pole depends
on the value chosen for χ′(qA). (In this section we give
this parameter of the solutions in terms of χ rather than
in terms of φ since χ′(qA) is real–valued and in order to
make it easier to compare with the preceding section. We
recall that the functions are related by φ = iχ and the
derivative is with respect to q̃ = −iq, see (31).) For small

8 There are further poles on the unphysical sheets of the cut
which we will not discuss here.



516 C. Ewerz: Gribov’s equation for the Green function of light quarks

=m φ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0
0.2

0.4
0.6-10

-5

0

5

10

<e q

=m q

Fig. 17. =m φ in the physical region, continuation of the so-
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Fig. 18. Positions of the singularities in the physical region of
the q-plane for the continuation of the solution in Fig. 7

values of this parameter the pole is close to the real q-axis,
and can in fact be shifted arbitrarily close to the real axis
by choosing sufficiently small χ′(qA). For larger values of
this parameter the pole moves along the circle towards
the imaginary q-axis. In all cases the pole is found in the
physical region above the real axis. In addition, there are
two further poles and cuts in the physical region. These
two poles are located under the same polar angle in the q-
plane. For smaller values of χ′(qA) they are located closer
to the real axis, and the one located at smaller |q| moves
closer to the origin, whereas the other one moves to larger
distances from the origin. At all three poles the function ρ
vanishes. As an example we show in Fig. 17 the function
=mφ for the same solution which is shown in Fig. 6 in
the Euclidean region, i. e. for the solution obtained from
r = 0.4 GeV and χ′(qA) = 10. The shape of the cuts in the
figure is due to the choice of the contours of integration.
The corresponding poles can be found again by looking
at the function p. Their positions can be seen in Fig. 6
as the points where the contour lines meet. There are fur-
ther singularities in the unphysical region which we do not
discuss here.

There are further solutions in the second class which
we called ‘asymmetric’ in Sect. 4.3 in which the zeros of φ
and p in the Euclidean region do not coincide. Also these
solutions have a singularity in the physical region on the
circle on which p = 0 is chosen on the imaginary q-axis. As
in the ‘symmetric’ solution this pole can be shifted very
close to the real axis but not below it. The ‘asymmetric’
solutions also have further singularities but we will not
discuss them here.

Finally, there is the third class of solutions in which
φ stays close to iπ throughout the Euclidean region. Here
the situation is similar to the one for the solutions of the
second class. We find a pole and a cut on the circle on
which on the imaginary q-axis p = 0. Again this is the
case for the ‘symmetric’ solutions (in which p = 0 coin-
cides with φ = iπ on the imaginary axis) as well as for
the ‘asymmetric’ solutions. As an example we present in
Fig. 18 the analytic structure of the ‘symmetric’ solution
that we have shown in Fig. 7. The crosses and lines cor-
respond to the poles and cuts. The solid line indicates
on which sheets of the cut the other singularities are lo-
cated. Denoting again as qA the point on the imaginary
axis at which φ = 0 and p = 0, we have for this solution
qA = i · 0.5 GeV and χ′(qA) = 4. For smaller values of
χ′(qA) the pole moves towards the real axis but stays in
the physical region. There are two further poles and cuts
as indicated in the figure. These two poles are located on
a straight line that goes through the origin.

In summary, we have found in this section that the an-
alytic structure of the solutions of the first class is similar
to the analytic structure of a perturbative Green function.
For this class we find a pole and a cut on the real q-axis
and no other singularities in the physical region. In the
other two classes there are poles and cuts on the physi-
cal sheet. Those solutions will in general not permit an
interpretation in agreement with causality and unitarity
and should therefore be regarded as unphysical solutions
of Gribov’s equation. We did not find any hint for the exis-
tence of exceptional solutions in which those singularities
move to the unphysical sheet for special initial conditions.
We can thus conclude that, as anticipated in [3], there
are no solutions of the equation without pion corrections
which would lead to confined quarks.

7 Summary and outlook

The subject of this paper has been Gribov’s equation for
the Green function of light quarks. We have have outlined
how this equation is derived from the Dyson–Schwinger
equation, and we have described how the approximations
made in the derivation are motivated by the physical pic-
ture of supercritical color charges in QCD. In Gribov’s
scenario the phenomenon of supercritical charges can oc-
cur in QCD due to the existence of very light quarks and is
expected to cause chiral symmetry breaking and confine-
ment. In the present paper we have concentrated on the
equation proposed in [2,3] which does not yet contain pion
corrections. The equation describes the Green function in
Feynman gauge. It collects the most singular contributions
to the Dyson–Schwinger equation coming from the region
of small momenta. At the same time it reproduces asymp-
totic freedom at large momenta. The derivation of the
equation involves the assumption that the running cou-
pling remains finite at small momentum scales. This is in
agreement with recent phenomenological results obtained
in the dispersive approach to power corrections in QCD.
These analyses find a typical value of the coupling in the
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infrared which is above the critical value αc = 0.43 arising
in Gribov’s scenario.

Gribov’s differential equation for the light quark’s
Green function is a nonlinear equation and so far only
asymptotic expansions had been used to study it. We have
described the corresponding results, especially the fixed
point structure of the equation resulting from this anal-
ysis and the emergence of the critical value of the strong
coupling. We have then performed a complete numeri-
cal study of the equation. After defining suitable mod-
els for the behaviour of the strong coupling constant in
the infrared region we have classified the possible solu-
tions of the equation according to their behaviour in the
Euclidean region of space–like momenta. At supercritical
coupling the solutions change their behaviour and can os-
cillate while approaching the fixed points. The dynamical
mass function of the quark has been computed in order
to show that this change leads to the breaking of chi-
ral symmetry at supercritical coupling. Chiral symmetry
breaking takes place independently of the details of the
running coupling in the infrared as long as it is supercrit-
ical in some interval of the momentum. The breaking of
chiral symmetry is connected with the occurrence of a se-
ries of phase transitions in the vacuum of light quarks. If
the perturbative mass mP of the quark, i. e. the mass de-
fined at a large momentum scale, is below a critical mass
then there are several solutions leading to different quark
masses mR at low momentum scales, and in general mR

does not vanish even in the limit of vanishing perturbative
mass mP . We have determined the critical mass as a func-
tion of the coupling. It turns out to depend considerably
on the mean value of the coupling in the infrared, but the
dependence is weaker if the coupling is only slightly above
the critical value. In agreement with the physical picture
of supercritical color charges the phase transitions occur
only for very small values of the perturbative quark mass.

In [3,4] it has been advocated that a confining Green
function in Gribov’s picture should be free of singulari-
ties in the physical region including time–like momenta.
We have therefore studied the solutions of Gribov’s equa-
tion in the whole complex momentum plane. One class of
solutions has an analytic structure similar to that of a per-
turbative Green function, whereas the other two classes of
solutions have singularities on the physical sheet. As antic-
ipated in [3] there are no solutions of the equation studied
in the present paper exhibiting the structure required for
confinement.

The phase transitions connected with the breaking of
chiral symmetry lead to the generation of pions as Gold-
stone bosons. Their special properties in this approach
[3] indicate that they should be taken into account as el-
ementary objects, and that the equation for the Green
function of the light quark should be modified accordingly.
This modification [4] is expected to change the behaviour
of the solutions in the Euclidean region only very little.
In particular, the breaking of chiral symmetry will take
place in a very similar way. But the pion corrections to
the equation are expected to have significant effects on the
analytic structure of the solutions. Due to that it appears

possible to find a confining Green function. The next step
should therefore be a numerical study of the correspond-
ing differential equation. Although the modified equation
with pion corrections is more complicated it can be anal-
ysed using the same methods that have been used in the
present paper. It would at a later stage also be interesting
to investigate the effects of an additional scalar (σ-)meson
which has been widely discussed in the literature in the
context of meson spectra and of sigma models.

We hope that the results of our analysis will be useful
also for the more conventional approach to the Dyson–
Schwinger equation for the quark. Some general properties
of the Green function resulting from the Dyson–Schwinger
equation appear to be rather universal and largely in-
dependent of the particular approximation scheme that
is used. The analysis of the Dyson–Schwinger equation
in quenched supercritical QED [20], for example, leads
to a picture of phase transitions and chiral symmetry
breaking that is very similar to the one resulting from
Gribov’s equation. It would certainly be useful to iden-
tify such universal features of the Green function and to
achieve a better understanding of their origin. In this re-
spect it is very important to consider different approxima-
tion schemes among which Gribov’s approach is certainly
exceptional since it is motivated by the very interesting
physical picture of supercritical charges.
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